| |||||||||||||||||||||||||||||||||
|
2011-11-06 Основы инфракрасного излучения
Инфракрасное излучение – это излучение, инфракрасные лучи, электромагнитное излучение, занимающее спектральную область между красным концом видимого света (с длиной волны l = 0,74 мкм) и коротковолновым радиоизлучением (l ~ 1—2 мм). Инфракрасную область спектра обычно условно разделяют на ближнюю (l от 0,74 до 2,5 мкм), среднюю (2,5—50 мкм) и далёкую (50—2000 мкм). Инфракрасное излучение было открыто в 1800 английским учёным В. Гершелем, который обнаружил, что в полученном с помощью призмы спектре Солнца за границей красного света (т. е. в невидимой части спектра) температура термометра повышается. В 19 в. было доказано, что И. и. подчиняется законам оптики и, следовательно, имеет ту же природу, что и видимый свет. В 1923 советский физик А. А. Глаголева-Аркадьева получила радиоволны с l ~ 80 мкм, т. е. соответствующие инфракрасному диапазону длин волн. Таким образом, экспериментально было доказано, что существует непрерывный переход от видимого излучения к инфракрасному излучению и радиоволновому и, следовательно, все они имеют электромагнитную природу. Спектр инфракрасного излучения, так же как и спектр видимого и ультрафиолетового излучений, может состоять из отдельных линий, полос или быть непрерывным в зависимости от природы источника инфракрасного излучения. Возбуждённые атомы или ионы испускают линейчатые инфракрасные спектры. Например, при электрическом разряде пары ртути испускают ряд узких линий в интервале 1,014—2,326 мкм; атомы водорода — ряд линий в интервале 0,95—7,40 мкм. Возбуждённые молекулы испускают полосатые инфракрасные спектры, обусловленные их колебаниями и вращениями . Колебательные и колебательно-вращательные спектры расположены главным образом в средней, а чисто вращательные — в далекой инфракрасной области. Проходя через земную атмосферу, инфракрасное излучение ослабляется в результате рассеяния и поглощения. Азот и кислород воздуха не поглощают инфракрасное излучение и ослабляют его лишь в результате рассеяния, которое, однако, для инфракрасного излучения значительно меньше, чем для видимого света. Пары воды, углекислый газ, озон и др. примеси, имеющиеся в атмосфере, селективно поглощают инфракрасное излучение . Особенно сильно поглощают инфракрасное излучение пары воды, полосы поглощения которых расположены почти во всей инфракрасной области спектра, а в средней инфракрасной области — углекислый газ. В приземных слоях атмосферы в средней инфракрасной области имеется лишь небольшое число «окон», прозрачных для инфракрасного излучения. Наличие в атмосфере взвешенных частиц — дыма, пыли, мелких капель воды (дымка, туман) — приводит к дополнительному ослаблению инфракрасного излучения в результате рассеяния его на этих частицах, причём величина рассеяния зависит от соотношения размеров частиц и длины волны инфракрасного излучения. При малых размерах частиц (воздушная дымка) инфракрасное излучение рассеивается меньше, чем видимое излучение (что используется в инфракрасной фотографии), а при больших размерах капель (густой туман) инфракрасное излучение рассеивается так же сильно, как и видимое. Мощным источником инфракрасного излучения является Солнце, около 50% излучения которого лежит в инфракрасной области. Значительная доля (от 70 до 80%) энергии излучения ламп накаливания с вольфрамовой нитью приходится на инфракрасное излучение. Мощным источником инфракрасного излучения является угольная электрическая дуга с температурой ~ 3900 К, излучение которой близко к излучению чёрного тела, а также различные газоразрядные лампы (импульсные и непрерывного горения). Исследование спектров испускания и поглощения в инфракрасной области используется при изучении структуры электронной оболочки атомов, для определения структуры молекул, а также для качественного и количественного анализа смесей веществ сложного молекулярного состава, например моторного топлива. В промышленности инфракрасное излучение применяется для сушки и нагрева материалов и изделий при их облучении, а также для обнаружения скрытых дефектов изделий. На основе фотокатодов, чувствительных к инфракрасному излучению (для l < 1,3 мкм), созданы специальные приборы — электроннооптические преобразователи, в которых не видимое глазом инфракрасное изображение объекта на фотокатоде преобразуется в видимое. На этом принципе построены различные приборы ночного видения (бинокли, прицелы и др.), позволяющие при облучении наблюдаемых объектов инфракрасного излучения от специальных источников вести наблюдение или прицеливание в полной темноте. Оптические квантовые генераторы, излучающие в инфракрасной области, используются также для наземной и космической связи. ![]() - водные ТЭНы, - воздушные ТЭНы, - металлические ТЭНы, - маслянные ТЭНы, - ТЭНы для агрессивной среды, - ТЭНы из стали - ТЭНы из нержавейки. |
|
|||||||||||||||||||||||||||||||
|